domingo, 7 de febrero de 2016


La Recta de Euler

Una recta es un conjunto infinito de puntos que se encuentran alineados, están unidos y cuya longitud es infinita. Además, la dimensión 1 es aquella que está compuesta en su totalidad por una recta.
Pues bien, es de sobra conocido que para construir una recta hacen falta tan solo dos puntos, aunque como bien hemos mencionado antes contienen infinitos puntos y por lo tanto si tres puntos se encuentran alineados también formarán una recta.
Ortocentro:
Es el punto de corte de las alturas de un triángulo. Las alturas son las rectas perpendiculares a cada lado que pasa por el vértice contrario.
Siempre estas tres rectas se cortan en un solo punto, cosa que no es tan trivial.
Ortocentro
Baricentro:
Es el punto de corte de las medianas de un triángulo. Las medianas son las rectas que pasan por el centro de cada lado del triángulo y corta al vértice contrario.
Tampoco es trivial, pero estas tres rectas también se cortan siempre en un solo punto.
Baricentro
Circuncentro:
Es el punto de corte de las mediatrices de un triángulo. Las mediatrices son las rectas perpendiculares a cada lado y que pasan por el centro del mismo.
Como en los casos anteriores, solo se obtiene un punto.
Además, cuando se traza una circunferencia de centro circuncentro y radio hasta cualquiera de los vértices, se obtiene una circunferencia en la que está contenido el triángulo y además los vértices pertenecen a la propia circunferencia.
Circuncentro
Pues ahora que ya conocemos a los protagonistas, se puede comprobar que siempre están alineados. En la imagen la Recta de Euler es la que está dibujada en amarillo y que efectivamente une los tres puntos anteriormente descritos.
Recta de Euler





Usos en la vida real del teorema de Pitágoras
Pitágoras fue un filósofo y matemático de la Antigua Grecia.

USOS EN LA VIDA REAL DEL TEOREMA DE PITÁGORAS

Pitágoras es muy conocido, a pesar de que no publicó ningún escrito durante su vida. Lo que sabemos de Pitágoras ha llegado a través de otros filósofos e historiadores. Pitágoras fue un filósofo y matemático griego conocido por introducir el teorema que lleva su nombre, que indica que el cuadrado de la hipotenusa de un triángulo rectángulo es igual a la suma del cuadrado de los catetos. El teorema no es sólo un postulado geométrico; también tiene aplicaciones en el mundo real.

Arquitectura y construcción

La aplicación más obvia del teorema de Pitágoras se encuentra en el mundo de la arquitectura y de la construcción, particularmente en lo referido a tejados con formas triangulares y hastiales. El teorema se aplica sólo cuando se trabaja con triángulos rectángulos o triángulos con un ángulo de 90 grados.

Navegación

La triangulación es un método usado para señalar una ubicación cuando se conocen dos puntos de referencia. Cuando la triangulación se usa sobre un ángulo de 90 grados, se usa el teorema de Pitágoras. Los celulares pueden rastrearse por triangulación. Los sistemas de navegación de vehículos usan este método. Puede usarse también junto con una brújula para determinar una localización geográfica. La NASA también usa la triangulación para determinar la posición de las naves espaciales. Se envía una señal a la nave y ésta responde devolviendo la señal. La triangulación usa estos números para calcular la posición de la nave en el espacio.

Localización de un terremoto

Los geólogos también usan el teorema de Pitágoras cuando se rastrea la actividad de un terremoto. Estos resultan de dos tipos de ondas: una que es más lenta que la otra. Al triangular la distancia recorrida por la onda más rápida con la correspondiente a la onda más lenta, los geólogos pueden determinar el centro o la fuente del terremoto.

Investigación de la escena de un crimen

Los investigadores forenses usan el teorema de Pitágoras para determinar la trayectoria de una bala, es decir, el camino de la bala antes de impactar. Esta trayectoria le permite a la policía saber la zona de la que provino el proyectil. Los investigadores pueden también saber qué tan cerca estaba el tirador de la víctima, lo que puede ayudar a la policía a determinar si fue un suicidio o un homicidio. Las salpicaduras de sangre, el rastro de sangre de una víctima después de un ataque, también pueden analizarse con el teorema de Pitágoras. La policía usa estos cálculos para determinar el ángulo del impacto y las posiciones de la víctima y del asaltante durante la agresión.

Trayectoria de un misil o de una bala

Los arqueros usan el teorema de Pitágoras para determinar la trayectoria correcta necesaria para dar en el blanco. Si los cálculos son exactos, la flecha impactará el objetivo. Si no, podría caer antes o errar la marca deseada. Los sistema de misiles guiados usan un método similar para dar con exactitud sobre un objetivo.
Créditos: http://www.ehowenespanol.com/usos-vida-real-del-teorema-pitagoras-info_169781/

Teorema de Tales

x
Tales de Mileto.
Cuando en geometría hablemos del Teorema de Tales (o Thales), debemos aclarar a cuál nos referimos ya que existen dos teoremas atribuidos al matemático griego Tales de Mileto en el siglo VI a. C.
El primero de ellos se refiere a la construcción de un triángulo que sea semejante a otro existente (triángulos semejantes son los que tienen iguales ángulos).
Mientras que el segundo desentraña una propiedad esencial de los circuncentros de todos los triángulos rectángulos (los circuncentros se encuentran en el punto medio de su hipotenusa).

Primer teorema

Como definición previa al enunciado del teorema, es necesario establecer que dos triángulos son semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre si. El primer teorema de Tales recoge uno de los postulados más básicos de la geometría, a saber, que:
Si en un triángulo se traza una línea paralela a cualquiera de sus lados, se obtienen dos triángulos semejantes.
Entonces, veamos el primer Teorema de Tales en un triángulo:
x
Dado un triángulo ABC, si se traza un segmento paralelo, B'C', a uno de los lados del triángulo, se obtiene otro triángulo AB'C', cuyos lados sonproporcionales a los del triángulo ABC
Lo que se traduce en la fórmula

tales001


Ver: PSU: Geometría;
Hagamos un ejercicio como ejemplo:

En el triágulo de la derecha, hallar las medidas de los segmentos a y b.
Apicamos la fórmula, y tenemos
tales002

x

Como vemos, la principal aplicación del teorema, y la razón de su fama, se deriva del establecimiento de la condición de semejanza de triángulos, a raíz de la cual se obtiene el siguiente corolario.
Corolario
Al establecer la existencia de una relación de semejanza entre ambos triángulos se deduce la necesaria proporcionalidad entre sus lados. Ello significa que la razón entre la longitud de dos de ellos en un triángulo se mantiene constante en el otro.
tales003
Una aplicación del Teorema de Tales.
Por ejemplo, en la figura de la izquierda se observan dos triángulos que, en virtud del Teorema de Tales, son semejantes. Entonces, como corolario, el cociente entre los lados A y B del triángulo pequeño es el mismo que el cociente entre los lados D y C en el triángulo grande.
En virtud del teorema de Tales, ambos triángulos son semejantes y se cumple que:

tales003
Este corolario es la base de la geometría descriptiva. Su utilidad es evidente; segúnHeródoto, el propio Tales empleó el corolario de su teorema para medir la altura de la  pirámide de Keops en Egipto.
La leyenda de Tales y las pirámides
Según la leyenda (relatada por Plutarco), Tales de Mileto en un viaje a Egipto, visitó las pirámides de Guiza (Keops, Kefrén y Micerinos), construidas varios siglos antes.
Admirado ante tan portentosos monumentos, quiso saber su altura.
La leyenda dice que solucionó el problema aprovechando la semejanza de triángulos (y bajo la suposición de que los rayos solares incidentes eran paralelos).
tales004
Así, estableció una relación de semejanza (Primer teorema de Tales) entre dos triángulos rectángulos, los que se grafican en la figura a la derecha.
Por un lado el que tiene por catetos (C y D) a la longitud de la sombra de la pirámide (C, conocible) y la longitud de su altura (D, desconocida), y por otro lado, valiéndose de una vara (clavada en el suelo de modo perfectamente vertical) otro cuyos catetos conocibles (A y B) son, la longitud de la vara (A) y la longitud de su sombra (B). Como en triángulos semejantes, se cumple que tales003, por lo tanto la altura de la pirámide es tales004, con lo cual resolvió el problema.
Otra variante del Teorema de Tales
x
Del primer teorema de Tales se deduce además lo siguiente (realmente es otra variante de dicho teorema, y, a su vez, consecuencia del mismo):
Si dos rectas cualesquieras (r y s) se cortan por varias rectas paralelas (AA’, BB’, CC’) los segmentos determinados en una de las rectas (AB, BC) son proporcionales a los segmentos correspondientes en la otra (A’B’, B’C’).

tales005


Ejercicios
1. Las rectas a, b y c son paralelas. Hallar la longitud de x.

x

tales006
2.Las rectas a, b son paralelas. ¿Podemos afirmar que c es paralela a las rectas a y b?

x
, porque se cumple el teorema de Thales.

tales007

Una aplicación inmediata de este teorema sería la división de un segmento en partes iguales, o en partes proporcionales a números dados

Aplicación del Primer Teorema de Tales

Una aplicación del teorema de Tales se utiliza para dividir un segmento en varias partes iguales (con ayuda de compás, regla y escuadra o cartabón).
Ejemplo
Dividir el segmento AB en 3 partes iguales
x1. Se dibuja una semirrecta de origen el extremo A del segmento.
x2. Tomando como unidad cualquier medida, se señalan en la semirrecta 3 unidades de medida a partir de A.
x3. Por cada una de las divisiones de la semirrecta se trazan rectas paralelas al segmento que une B con la última división sobre la semirrecta. Los puntos obtenidos en el segmento AB determinan las 3 partes iguales en que se divide.

Segundo teorema

El segundo teorema de Tales de Mileto es un teorema de geometría particularmente enfocado a los triángulos rectángulos, lascircunferencias y los ángulos inscritos, consiste en el siguiente enunciado:
Sea B un punto de la circunferencia de diámetro AC, distinto de A y de C. Entonces el ángulo ABC, es recto.
Este teorema (véase figuras  1 y 2), es un caso particular de una propiedad de los puntos cocíclicos y de la aplicación de losángulos inscritos dentro de una circunferencia.
tales005x
Figura 1.
Ilustración del enunciado del segundo teorema de Tales de Mileto.
Figura 2.
Siempre que AC sea un diámetro, el ángulo B será constante y recto.

Demostración:
En la circunferencia de centro O y radio r (véase figura 3), los segmentos
tales008
son iguales por ser todos radios de la misma circunferencia.
Por lo tanto, los triángulos AOB y BOC son isósceles.
La suma de los ángulos del triángulo ABC es:
2α + 2β = π (radianes) (180º)
Dividiendo ambos miembros de la ecuación anterior por dos, se obtiene:
tales009
Con la expresión anterior el segundo teorema queda demostrado.
tales006
Figura 3.
Los triángulos AOB y BOC son isósceles.

Semicircunferencia

Como la condición para este enunciado es que la hipotenusa corresponda al diámetro de una circunferencia, también se puede expresar como que el triángulo está inscrito en una semicircunferencia.
Entonces, el Teorema de Tales dirá que "todo triángulo inscrito en una semicircunferencia es rectángulo con hipotenusa igual al diámetro".
triangulo_circunf_001
Demostración
Sea el triángulo BCA (en la figura superior)
Como OA y OB son iguales (radios de la semicircunferencia) , los ángulos ABO y BOA también son iguales y como OA y OC también son iguales, los ángulos OAC y OCA son iguales. Por tanto, ángulo BAC es igual a la suma de ABC y ACB.
Teniendo en cuenta que la suma de los tres ángulos interiores de un triángulo es 180º, el ángulo BAC debe ser recto.
Ver: PSU Geometría: Pregunta 08_2006
Corolarios
Corolario 1
 “En todo triángulo rectángulo la longitud de la mediana correspondiente a la hipotenusa es siempre la mitad de la hipotenusa.

Ya que aplicando el teorema anterior, se sabe que para cualquier posición que adopte el vértice B vale la igualdad,OA = OB = OC = r, donde OB es la mediana de la hipotenusa, (véase figura 3).


Corolario 2
La circunferencia circunscripta a todo triángulo rectángulo siempre tiene radio igual a la mitad  de la hipotenusa y su circuncentro se ubicará en el punto medio de la misma.

El corolario 2 también surge de aplicar el teorema anterior, para una comprensión intuitiva basta observar la figura 2.
Aplicación del Segundo Teorema de Tales
tales007
Construcción de tangentes (líneas rojas en la figura a la derecha) a una circunferencia k desde un punto P, utilizando el segundo teorema de Tales.
Este segundo teorema (de Tales de Mileto) puede ser aplicado para trazar las tangentes a una circunferencia k dada, que además pasen por un punto P conocido y externo a la misma (véase figura ).
Se supondrá que una tangente cualquiera t (por ahora desconocida) toca a la circunferencia k en un punto T (también desconocido por ahora).
Se sabe por simetría que cualquier radio r de la circunferencia k es perpendicular a la tangente del punto T que dicho radio define en la misma, por lo que concluimos que ángulo OTP es necesariamente recto.
Lo anterior implica que el triángulo OTP es rectángulo.
Recordando el corolario 2 del segundo teorema de Tales podemos deducir que entonces el triángulo OTP es inscribible en una circunferencia de radio mitad de la hipotenusa OP del mismo.
Entonces, marcando el punto H como punto medio de la hipotenusa OP y haciendo centro en el mismo, podemos dibujar una segunda circunferencia auxiliar (gris en la figura) que será la que circunscribe al triángulo OTP.
Esta última circunferencia trazada interceptará a la circunferencia k en dos puntos T y T', estos son justamente los puntos de tangencia de las dos rectas que son simultáneamente tangentes a k y además pasan por el punto P, ahora ya conocidos los puntos TT' solo basta trazar las rectas TP y T'P (rojas en la figura) para tener resuelto el problema.
Créditos http://www.profesorenlinea.cl/geometria/Teorema_de_Tales.html

Triángulos semejante


triángulotriángulo
Dados los triángulos ABC y A'B'C' determinamos los lados y ángulos homólogos.
Lados homólogos:
a y a', b y b', c y c' 
Ángulos homólogos:
letras

Dos triángulos son semejantes cuando tienen sus ángulos homólogos iguales y sus lados homólogos proporcionales.
ángulos
razones
La razón de la proporción entre los lados de los triángulos se llama razón de semejanza.
La razón de los perímetros de los triángulos semejantes es igual a su razón de semejanza.
razones
La razón de las áreas de los triángulos semejantes es igual al cuadrado de su razón de semejanza.
razones

Criterios de semejanza

1Dos triángulos son semejantes si tienen dos ángulos iguales.

dubujodubujo

iGUALDADES

Dos triángulos son semejantes si tienen los lados proporcionales.

triángulotriángulo

razones

Dos triángulos son semejantes si tienen dos lados proporcionales y el ángulo comprendidoentre ellos igual.

dibujodibujo


Semejanza de triángulos rectángulos

1Dos triángulos rectángulos son semejantes si tienen un ángulo agudo igual.
dibujodibujo
C

2Dos triángulos rectángulos son semejantes si tienen los dos catetos proporcionales.
dibujodibujo
C

3Dos triángulos rectángulos son semejantes si tienen proporcionales la hipotenusa y uncateto.
dibujodibujo
C

Ejemplos prácticos

1. Determinar la altura de un edificio que proyecta una sombra de 6.5 m a la misma hora que un poste de 4.5 m de altura da una sombra de 0.90 m.
dibujo
solución

2.Los catetos de un triángulo rectángulo que miden 24 m y 10 m. ¿Cuánto medirán los catetos de un triángulo semejante al primero cuya hipotenusa mide 52 m?
dibujo
solución
solución
solución
Créditos: http://www.vitutor.com/geo/eso/as_5.html